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Runaway electrons (REs) produced during disruptions  

can damage tokamak wall  

Å Localized impact of high -energy RE 
beam can damage tokamak wall  

 
Å ITER mitigation strategy if disruption 

cannot be avoided [1]:  
 
ĭ Massive impurity injection to dissipate 

thermal and magnetic energy and 

prevent formation of REs  
 

ĭ This approach has yet to be proven  
 

Å Studying of post -disruption runaway 

plasma remains important  
 

Å This talk: 
 

ĭEquilibria of RE beam in DIII -D 
 

ĭRE-driven instabilities in DIII -D 
 

 
[1] Breizman  et al  NF 2019 

Formation and loss of RE beam  
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Outline  

New physics of RE beam:  

Å Energy distribution function  

Å Current density profile  

Å Internal MHD instability  

Å External kink instability  

Å Frequency chirping instabilities  
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Outline  

New physics of RE beam:  

Å Energy distribution function  

Å Current density profile  

Å Internal MHD instability  

Å External kink instability  

Å Freq. chirping instabilities  

 

Measurements of f(E) 

provides information on:  

 

Åmaximum energy of REs  
 

Åmajor current carriers  
 

Å balance between 

accelerating and 

dissipating factors  
 

Å possibility of RE -driven 

instabilities  

 

Motivation  
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Energy distribution function of RE beam is generally 

poorly diagnosed  

ÅHow to predict RE physics in ITER?  
 

ĭ Measure REs in existing tokamaks 
and verify RE models  
 

ÅEasy to say, but difficult to do:  
 
ĭ Energy range from 0.1 to 30 MeV  

ĭ Current from 0.1 to 1 MA  
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Energy distribution function of RE beam is generally 

poorly diagnosed  

ÅHow to predict RE physics in ITER?  
 

ĭ Measure REs in existing tokamaks 
and verify RE models  
 

ÅEasy to say, but difficult to do:  
 
ĭ Energy range from 0.1 to 30 MeV  

ĭ Current from 0.1 to 1 MA  
 
 
 

Hollmann2015 (DIII -D): no data in range 0.1ĭ10 MeV 

Nocente2018 (ASDEX -U): no spatial measurements  

Paz-Soldan2017 (DIII -D): Ohmic  plasma,  
effects specific to RE plateau can be missed  
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Energy distribution function of RE beam is generally 

poorly diagnosed. But we can do it now on DIII -D 

ÅRE energy distribution can be 
constrained via hard X -ray (HXR) 

bremsstrahlung measurements and 
using recent advances in:  
 
ĭ New scenario: low -current RE 

beam in low -density plasma  
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Energy distribution function of RE beam is generally 

poorly diagnosed. But we can do it now on DIII -D 

ÅRE energy distribution can be 
constrained via hard X -ray (HXR) 

bremsstrahlung measurements and 
using recent advances in:  
 
ĭ New scenario: low -current RE 

beam in low -density plasma  
 

Ý Low, measureable HXR flux  θ ὲὤ  

Ý Long -lasting RE plateau  
Ý Large variability of applied voltage  

 
 

 

A B 

ÅInjection of small Ar pellet Ƃ disruption and 

formation of RE beam  
 

ÅD2 massive gas injection Ƃ purge of Ar from    

RE beam  

A 

B 

å180 kA 
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Energy distribution function of RE beam is generally 

poorly diagnosed. But we can do it now on DIII -D 

ÅRE energy distribution can be 
constrained via hard X -ray (HXR) 

bremsstrahlung measurements and 
using recent advances in:  
 
ĭ New scenario: low -current RE 

beam in low -density plasma  
 

Ý Low, measureable HXR flux  θ ὲὤ  
Ý Long -lasting RE plateau  
Ý Large variability of applied voltage  

 
ĭ Gamma Ray Imager upgrade: 

ultrafast gamma detector [1,2]  
 

Ý Time resolution increased by 1000x  
Ý MHz counting capabilities  

 
 

 
 

A B 

ÅInjection of small Ar pellet Ƃ disruption and 

formation of RE beam  
 

ÅD2 massive gas injection Ƃ purge of Ar from    

RE beam  

A 

B 

[1] Dal Molin et al  RSI 2018 

[2] Nocente  et al  RSI 2018 

å180 kA 
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Energy distribution function of RE beam is generally 

poorly diagnosed. But we can do it now on DIII -D 

ÅRE energy distribution can be 
constrained via hard X -ray (HXR) 

bremsstrahlung measurements and 
using recent advances in:  
 
ĭ New scenario: low -current RE 

beam in low -density plasma  
 

Ý Low, measureable HXR flux  θ ὲὤ  
Ý Long -lasting RE plateau  
Ý Large variability of applied voltage  

 
ĭ Gamma Ray Imager upgrade: 

ultrafast gamma detector [1,2]  
 

Ý Time resolution increased by 1000x  
Ý MHz counting capabilities  

 
 

 
 

A B 

ÅInjection of small Ar pellet Ƃ disruption and 

formation of RE beam  
 

ÅD2 massive gas injection Ƃ purge of Ar from    

RE beam  

A 

B 

Region of analysis  

[1] Dal Molin et al  RSI 2018 

[2] Nocente  et al  RSI 2018 
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RE energy distribution function conserves over 

observation period and has bump at 5 ð6 MeV  

Å Measured RE distribution function 

has maximum energy up to 20 MeV  
ĭConsistent with other machines 
reporting REs up to 20ĭ30 MeV 
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RE energy distribution function conserves over 

observation period and has bump at 5 ð6 MeV  

Å Measured RE distribution function 

has maximum energy up to 20 MeV  
ĭConsistent with other machines 
reporting REs up to 20ĭ30 MeV 

 

Å There is a bump at 5ĭ6 MeV 

suggesting possibility of kinetics 

instabilities  
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RE energy distribution function conserves over 

observation period and has bump at 5 ð6 MeV  

Å Measured RE distribution function 

has maximum energy up to 20 MeV  
ĭConsistent with other machines 
reporting REs up to 20ĭ30 MeV 

 

Å There is a bump at 5ĭ6 MeV 

suggesting possibility of kinetics 

instabilities  

 

Å RE distribution function conserves 

over 450 ms at small Eȕ=0.1ĭ0.2V/m 

ĭ This can be explained by collisional 

damping: E ȕ/ Ec  = 1ĭ2, Űcoll  = 7 ms 

(D2 bound electrons are important!)  

ĭ Synchrotron damping is small:         

Űrad = 160 Űcoll   
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Å Measured RE distribution function 

has maximum energy up to 20 MeV  
ĭConsistent with other machines 
reporting REs up to 20ĭ30 MeV 

 

Å There is a bump at 5ĭ6 MeV 

suggesting possibility of kinetics 

instabilities  

 

Å RE distribution function conserves 

over 450 ms at small Eȕ=0.1ĭ0.2V/m 

ĭ This can be explained by collisional 

damping: E ȕ/ Ec  = 1ĭ2, Űcoll  = 7 ms 

(D2 bound electrons are important!)  

ĭ Synchrotron damping is small:         

Űrad = 160 Űcoll   
 

Å Main features are captured via     

0D-2V Fokker -Plank modelling  

 

RE energy distribution function conserves over 

observation period and has bump at 5 ð6 MeV  
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Outline  

New physics of RE beam:  

Å Energy distribution function  

Å Current density profile  

Å Internal MHD instability  

Å External kink instability  

Å Freq. chirping instabilities  

 

Energy distribution function 

of RE beam is obtained via 

HXR measurements:  

 

Å quasi -stationary in low 

density plasma  

 

Å has a bump at 5 MeV  
 

Å Fokker -Plank modelling 

qualitatively matches 

the experiment  

 

Conclusion  
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Outline  

New physics of RE beam:  

Å Energy distribution function  

Å Current density profile  

Å Internal MHD instability  

Å External kink instability  

Å Freq. chirping instabilities  

 
Peaking of post -disruption RE 

beam current profile is 

predicted in simulations [1ĭ3] 
 

JET reported experimentally 

observed peaked profile [4, 5]  

 

Models show excitation of MHD 
instabilities driven by peaked 

RE current profile [6ĭ9] 

 

Motivation  

[1] Eriksson et al  PRL 2004  [4] Gill et al  NF 2000   [6] Smith et al  PPCF 2009  

[2] Smith et al  PoP 2006  [5] Loarte  et al  NF 2011  [7] Matsuyama et al  NF 2017  
[3] Martin -Solis et al  NF 2017       [8] Aleynikova  et al  PPR  2006 
       [9] Bandaru  et al  PRE  2019  
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Current profile of RE beam is resolved via vertical scan  

Å f(E) shifts to 

lower energies 
when RE beam 
moves (300 ms) 
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Current profile of RE beam is resolved via vertical scan  

Å f(E) shifts to 

lower energies 
when RE beam 
moves (300 ms) 
 

Å Beam passes 
the GRI sightline 

but keeps 
constant radius  
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Current profile of RE beam is resolved via vertical scan  

Å f(E) shifts to 

lower energies 
when RE beam 
moves (300 ms) 
 

Å Beam passes 
the GRI sightline 

but keeps 
constant radius  
 

Å As a result, RE 
beam energy 
distribution 

function is 
spatially 
resolved 
providing 
current density 

profile  
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Post-disruption RE current is peaked but stable  

Å Post-disruption current profile is 
more peaked than pre -
disruption current with greater 
l i =1.13 vs 0.86 
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Post-disruption RE current is peaked but stable  

Å Post-disruption current profile is 
more peaked than pre -
disruption current with greater 
l i =1.13 vs 0.86 

 

Å Post-disruption relatively small 
RE current (180 kA) is found 
stable likely due to elevated q 
profile  
 

Å RE plateau sustains as long as 
there is transformer flux to drive 
it (observed up to 1.5 s)  
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Å Post-disruption current profile is 
more peaked than pre -
disruption current with greater 
l i =1.13 vs 0.86 

 

Å Post-disruption relatively small 
RE current (180 kA) is found 
stable likely due to elevated q 
profile  
 

Å RE plateau sustains as long as 
there is transformer flux to drive 
it (observed up to 1.5 s)  
 

Å It is unclear when peaking 
takes place (during CQ [1,2] 

or/and high -Z RE plateau [3])  

Post-disruption RE current is peaked but stable  

[1] Eriksson et al  PRL 2004 
[2] Smith et al  PoP 2006 
[3] McDevitt et al  PPCF 2019 
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Outline  

New physics of RE beam:  

Å Energy distribution function  

Å Current density profile  

Å Internal MHD instability  

Å External kink instability  

Å Freq. chirping instabilities  

 
RE current density profile is 

measured by taking moments 

of spatially resolved RE energy 
distribution function  

 

Compared to pre -disruption 

plasma, it is found be more 
peaked with greater l i , but has 

elevated q profile and much 

greater qa 

 

No MHD instabilities are 

observed presumably due to 
relatively small RE current and 

high qa  

 

Conclusion  
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Outline  

New physics of RE beam:  

Å Energy distribution function  

Å Current density profile  

Å Internal MHD instability  

Å External kink instability  

Å Freq. chirping instabilities  

 

180 kA RE beam has peaked 

current profile but is found to 

be MHD stable in DIII -D 
 

Small -scale MHD instabilities 

might increase RE dissipation 

while large -scale can cause 

complete RE loss  
 

To study MHD stability, RE 

beam is deliberately 

destabilized in DIII -D by 

ramping solenoid current  
 

Motivation  
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RE beam instability is observed when large 

accelerating voltage is applied  

Å Large fluctuations of 
plasma signals are 

observed when large 
accelerating voltage is 
applied to RE beam  
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RE beam instability is observed when large 

accelerating voltage is applied  

Å Large fluctuations of 
plasma signals are 

observed when large 
accelerating voltage is 
applied to RE beam  
 

Å ECE shows fast fall and 
slow rise  

 

Right panel  




